eatATA
: a Minimal
ExampleeatATA
efficiently
translates test design requirements for Automated Test Assembly
(ATA
) into constraints for a Mixed Integer Linear
Programming Model (MILP). A number of efficient and user-friendly
functions are available that translate conceptual test assembly
constraints to constraint objects for MILP solvers, like the
GLPK
solver. In the remainder of this vignette we will
illustrate the use of eatATA
using a minimal example. A
general overview over eatATA
can be found in the vignette
Overview of eatATA
Functionality.
First, eatATA
is loaded into your R
session. In this vignette we use a small simulated item pool,
items_mini
. The goal will be to assemble a single test form
consisting of ten items, an average test time of eight minutes and
maximum TIF
at medium ability. We therefore calculate the
IIF
at medium ability and append it to the item pool using
the calculateIFF()
function.
# loading eatATA
library(eatATA)
# item pool structure
str(items_mini)
#> 'data.frame': 30 obs. of 4 variables:
#> $ item : int 1 2 3 4 5 6 7 8 9 10 ...
#> $ format : chr "mc" "mc" "mc" "mc" ...
#> $ time : num 27.8 15.5 31 29.9 23.1 ...
#> $ difficulty: num -1.881 0.843 1.119 0.729 -0.489 ...
# calculate and append IIF
items_mini[, "IIF_0"] <- calculateIIF(B = items_mini$difficulty, theta = 0)
In Table 1 you can see the first five items of the item pool.
item | format | time | difficulty | IIF_0 |
---|---|---|---|---|
1 | mc | 27.786 | -1.881 | 0.1090032 |
2 | mc | 15.453 | 0.843 | 0.4494582 |
3 | mc | 31.016 | 1.119 | 0.3266106 |
4 | mc | 29.874 | 0.729 | 0.5033924 |
5 | mc | 23.134 | -0.489 | 0.6108816 |
Next, the objective function is defined: The TIF
should
be maximized at medium ability. For this, we use the
maxObjective()
function.
Our further, fixed constraints are defined as additional constraint objects.
itemNumber <- itemsPerFormConstraint(nForms = 1, operator = "=",
targetValue = 10,
itemIDs = items_mini$item)
itemUsage <- itemUsageConstraint(nForms = 1, operator = "<=",
targetValue = 1,
itemIDs = items_mini$item)
testTime <- itemValuesDeviationConstraint(nForms = 1,
itemValues = items_mini$time,
targetValue = 8 * 60,
allowedDeviation = 5,
relative = FALSE,
itemIDs = items_mini$item)
Alternatively, we could determine the appropriate test time based on
the item pool using the autoItemValuesMinMax()
function.
To automatically assemble the test form based on our constraints, we
call the useSolver()
function. In this function we define
which solver should be used as back end. As a default solver, we
recommend GLPK
, which is automatically installed alongside
this package.
solver_out <- useSolver(list(itemNumber, itemUsage, testTime, testInfo),
solver = "GLPK")
#> GLPK Simplex Optimizer 5.0
#> 34 rows, 31 columns, 151 non-zeros
#> 0: obj = -0.000000000e+00 inf = 4.850e+02 (2)
#> 14: obj = -0.000000000e+00 inf = 0.000e+00 (0)
#> * 34: obj = 6.734471402e+00 inf = 4.441e-16 (0)
#> OPTIMAL LP SOLUTION FOUND
#> GLPK Integer Optimizer 5.0
#> 34 rows, 31 columns, 151 non-zeros
#> 30 integer variables, all of which are binary
#> Integer optimization begins...
#> Long-step dual simplex will be used
#> + 34: mip = not found yet <= +inf (1; 0)
#> + 44: >>>>> 6.579408205e+00 <= 6.732773863e+00 2.3% (9; 0)
#> + 46: >>>>> 6.729573876e+00 <= 6.729573876e+00 0.0% (7; 5)
#> + 46: mip = 6.729573876e+00 <= tree is empty 0.0% (0; 19)
#> INTEGER OPTIMAL SOLUTION FOUND
The solution can be inspected directly via
inspectSolution()
or appended to the item pool via
appendSolution()
. Using the inspectSolution()
function an additional row is created that calculates the column sums
for all numeric variables.
inspectSolution(solver_out, items = items_mini, idCol = "item")
#> $form_1
#> item format time difficulty theta=0
#> 8 8 mc 30.21856 -0.36707654 0.6564876
#> 14 14 open 62.99738 0.58136415 0.5712686
#> 15 15 open 56.59458 -0.12012428 0.7150196
#> 20 20 open 87.05063 0.10201223 0.7170949
#> 22 22 order 39.92415 0.15006395 0.7108712
#> 24 24 order 40.52289 -0.53606969 0.5910511
#> 25 25 order 52.15832 0.14083641 0.7122442
#> 26 26 order 38.29060 0.02381911 0.7222039
#> 28 28 order 43.77592 0.41298287 0.6403034
#> 29 29 order 25.55363 0.24091747 0.6930294
#> Sum 211 <NA> 477.08666 0.62872568 6.7295739
appendSolution(solver_out, items = items_mini, idCol = "item")
#> item format time difficulty theta=0 form_1
#> 1 1 mc 27.78586 -1.88090278 0.10900318 0
#> 2 2 mc 15.45258 0.84295865 0.44945822 0
#> 3 3 mc 31.01590 1.11881538 0.32661056 0
#> 4 4 mc 29.87421 0.72867743 0.50339241 0
#> 5 5 mc 23.13401 -0.48870993 0.61088162 0
#> 6 6 mc 25.19305 0.47273874 0.61733915 0
#> 7 7 mc 25.66340 -1.18054268 0.30183441 0
#> 8 8 mc 30.21856 -0.36707654 0.65648760 1
#> 9 9 mc 26.61642 -0.56879434 0.57682871 0
#> 10 10 mc 15.35510 1.35397237 0.23900562 0
#> 11 11 open 65.85163 -0.75879786 0.48917461 0
#> 12 12 open 35.94400 2.49927381 0.04012039 0
#> 13 13 open 78.85030 1.33165799 0.24650909 0
#> 14 14 open 62.99738 0.58136415 0.57126860 1
#> 15 15 open 56.59458 -0.12012428 0.71501958 1
#> 16 16 open 45.12778 -1.28629686 0.26229560 0
#> 17 17 open 48.11908 -0.86124314 0.44088544 0
#> 18 18 open 76.32293 0.76977036 0.48398822 0
#> 19 19 open 76.20244 -1.39388826 0.22601541 0
#> 20 20 open 87.05063 0.10201223 0.71709486 1
#> 21 21 order 22.47400 -0.43147145 0.63341304 0
#> 22 22 order 39.92415 0.15006395 0.71087118 1
#> 23 23 order 57.71593 -0.82071059 0.45992776 0
#> 24 24 order 40.52289 -0.53606969 0.59105111 1
#> 25 25 order 52.15832 0.14083641 0.71224418 1
#> 26 26 order 38.29060 0.02381911 0.72220392 1
#> 27 27 order 45.97548 2.79595336 0.02450104 0
#> 28 28 order 43.77592 0.41298287 0.64030341 1
#> 29 29 order 25.55363 0.24091747 0.69302944 1
#> 30 30 order 19.50162 -0.51434114 0.60026891 0